The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation.
نویسندگان
چکیده
Continuous organ formation from the shoot apical meristem requires the integration of two functions: a set of undifferentiated, pluripotent stem cells is maintained at the very tip of the meristem, while their daughter cells in the periphery initiate organ primordia. The homeobox genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM) encode two major regulators of meristem formation and maintenance in Arabidopsis, yet their interaction in meristem regulation is presently unclear. Here, we have addressed this question using loss- and gain-of-function approaches. We show that stem cell specification by WUS does not require STM activity. Conversely, STM suppresses differentiation independently of WUS and is required and sufficient to promote cell division. Consistent with their independent and distinct phenotypic effects, ectopic WUS and STM activities induce the expression of different downstream target genes. Finally, the pathways regulated by WUS and STM appear to converge in the suppression of differentiation, since coexpression of both genes produced a synergistic effect, and increased WUS activity could partly compensate for loss of STM function. These results suggest that WUS and STM share labour in the shoot apical meristem: WUS specifies a subset of cells in the centre as stem cells, while STM is required to suppress differentiation throughout the meristem dome, thus allowing stem cell daughters to be amplified before they are incorporated into organs.
منابع مشابه
The ULTRAPETALA1 gene functions early in Arabidopsis development to restrict shoot apical meristem activity and acts through WUSCHEL to regulate floral meristem determinacy.
Shoot and floral meristem activity in higher plants is controlled by complex signaling networks consisting of positive and negative regulators. The Arabidopsis ULTRAPETALA1 (ULT1) gene has been shown to act as a negative regulator of meristem cell accumulation in inflorescence and floral meristems, as loss-of-function ult1 mutations cause inflorescence meristem enlargement, the production of ex...
متن کاملThe DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem ccll fate and lateral organ development.
The two main tasks of a meristem, self-perpetuation and organ initiation, are separated spatially. Slowly dividing cells in the meristem center act as pluripotent stem cells, and only their derivatives in the meristem periphery specify new organs. Meristem integrity and cellular proliferation are controlled in part by regulatory interactions between genes that are expressed in specific subdomai...
متن کاملThe DORNRÖSCHEN/ENHANCER OF SHOOT REGENERATION1 Gene of Arabidopsis Acts in the Control of Meristem Cell Fate and Lateral Organ Development
The two main tasks of a meristem, self-perpetuation and organ initiation, are separated spatially. Slowly dividing cells in the meristem center act as pluripotent stem cells, and only their derivatives in the meristem periphery specify new organs. Meristem integrity and cellular proliferation are controlled in part by regulatory interactions between genes that are expressed in specific subdomai...
متن کاملHistone H4R3 Methylation Catalyzed by SKB1/PRMT5 Is Required for Maintaining Shoot Apical Meristem
The shoot apical meristem (SAM) is the source of all of the above-ground tissues and organs in post-embryonic development in higher plants. Studies have proven that the expression of genes constituting the WUSCHEL (WUS)-CLAVATA (CLV) feedback loop is critical for the SAM maintenance. Several histone lysine acetylation and methylation markers have been proven to regulate the transcription level ...
متن کاملWUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice.
The shoot apical meristem is the ultimate source of the cells that constitute the entire aboveground portion of the plant body. In Arabidopsis thaliana, meristem maintenance is regulated by the negative feedback loop of WUSCHEL-CLAVATA (WUS-CLV). Although CLV-like genes, such as FLORAL ORGAN NUMBER1 (FON1) and FON2, have been shown to be involved in maintenance of the reproductive meristems in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 129 13 شماره
صفحات -
تاریخ انتشار 2002